PesWiki.com

Menu

PowerPedia:Wireless transmission of electricity

Lasted edited by Andrew Munsey, updated on June 14, 2016 at 9:02 pm.

  • 63 errors has been found on this page. Administrator will correct this soon.
  • This page has been imported from the old peswiki website. This message will be removed once updated.

There was an error working with the wiki: Code[1]

Image:WirelessPlates.png

Wireless energy transfer also known as wireless energy transmission is the process that takes place in any system where Electricity energy is transmitted from a power source (such as a There was an error working with the wiki: Code[17] transmitted is only important when it affects the integrity of the signal.

History

Wireless energy transfer, the transmission of electrical energy without wires, has been around since about 1856 in the form of There was an error working with the wiki: Code[18] held near an active radio transmitter radiating more than a few watts (such as an amateur radio transmitter) will glow. The reason behind this phenomenon is similar to the physics involved in the There was an error working with the wiki: Code[30].

As There was an error working with the wiki: Code[19] were being developed during the early 1900s, researchers were investigating different wireless energy transfer methods to power more significant loads than the high-resistance sensitive devices that were being used to detect the received energy. At the St. Louis World's Fair (1904), a prize was offered for a successful attempt to drive an 0.1 There was an error working with the wiki: Code[20] by energy transmitted through space at a distance of least 100 feet.(The Electrician (London), September 1902, pages 814-815).)

Except for There was an error working with the wiki: Code[31]s, use of wireless energy transfer for powering devices over room-sized or community-sized ranges has not been widely implemented to date. It has been assumed by some that broadcasting electrical energy sufficient for powering electrical devices would have negative health implications. With focused beams of microwave radiation there are definite health and safety risks. The physical alignment and targeting of devices to receive the energy beam is problematic.

Wireless energy transfer methods

Image:WirelessLight.png

At least four methods exist by which electrical energy can be transferred from a source to a load without the use of manmade conductors. These are: electromagnetic induction, electromagnetic radiation, evanescent wave coupling, and electrical conduction. The second method is radiative the others are non-radiative.

Electromagnetic induction

The electrical There was an error working with the wiki: Code[21]. (An added benefit is the capability to step the primary voltage either up or down.) The There was an error working with the wiki: Code[32] is an example of how this principle can be used. In the induction cooker, electrical energy is wirelessly transferred into the cookware, where it is converted ohmically into heat for cooking. Electric toothbrush chargers work in a similar way. The main drawback to induction, however, is the short range. The receiver must be in relatively close proximity to the transmitter (or “induction unit") in order to inductively couple with it.

Electromagnetic radiation

Electromagnetic radiation in the form of either radio waves or light can also be used to transfer energy wirelessly. While systems based upon this method are used mostly for information transfer, a high degree of efficiency in power transmission is also achievable under certain circumstances.

The earliest work in the area of wireless transmission via radio waves was performed by There was an error working with the wiki: Code[33] in 1888. A few years later There was an error working with the wiki: Code[34] worked with a modified form of Hertz's transmitter.

Image:TeslaApparatus.png

Nikola Tesla also investigated radio transmission and reception but unlike Marconi, Tesla designed his own transmitter -- one with power-processing capability some five orders-of-magnitude greater than those of its predecessors. He would use this same coupled-tuned-circuit oscillator to implement his non-radiative conduction-based wireless energy transfer method as well. Both of these wireless methods employ a minimum of four tuned circuits, two at the transmitter and two at the receiver.

Japanese researcher There was an error working with the wiki: Code[35] also investigated wireless transmission. In February 1926, Yagi and Uda published their first paper on the tuned high gain directional array known as the There was an error working with the wiki: Code[36]. This beam antenna has been widely adopted throughout the broadcasting and wireless telecommunications industries due to its exceptional performance characteristics and robustness such as a There was an error working with the wiki: Code[36]. (Scanning the Past: A History of Electrical Engineering from the Past, Hidetsugu Yagi)

Efficient power transmission via radio waves can be achieved by using shorter wavelengths of electromagnetic radiation, typically in the There was an error working with the wiki: Code[22] range. A There was an error working with the wiki: Code[38] may be used to convert the microwave energy back into electricity. Conversion efficiencies exceeding 95% have been achieved in this manner. Power beaming using microwaves has been proposed for the transmission of energy from orbiting solar power satellites to earth and the beaming of power to spacecraft leaving orbit has been considered. In the case of light, power can be transmitted by converting electricity into a There was an error working with the wiki: Code[39] beam that is then fired at a Solar cell receiver. This is generally known as "There was an error working with the wiki: Code[40]." Its drawbacks are as follows:

# Conversion to light, such as a laser, is usually very inefficient (although There was an error working with the wiki: Code[41]s improve this)

# Conversion back into electricity is also typically very inefficient, with the absolute best There was an error working with the wiki: Code[23] solar cells achieving 40% efficiency.

# Atmospheric absorption causes losses.

# As with microwave beaming, this method requires a direct line of sight with the target.

Photovoltaic cells can also be used to receive energy from Earth's strongest natural source of electromagnetic radiation, the Sun. A new company, Powercast introduced wireless power transfer technology using RF energy at the 2007 Consumer Electronics Show, winning best Emerging Technology. (CES Best of 2007)

Evanescent wave coupling

Researchers at There was an error working with the wiki: Code[24] around in a highly angular There was an error working with the wiki: Code[25](s) of the appropriate frequency, the evanescent field gives rise to propagating wave mode(s), thereby connecting (or There was an error working with the wiki: Code[26]) the wave from one waveguide to the next.

If a proper There was an error working with the wiki: Code[27] waveguide is brought near the transmitter, the evanescent waves can allow the energy to There was an error working with the wiki: Code[28] (specifically There was an error working with the wiki: Code[29] into DC power. Since the electromagnetic waves would tunnel, they would not propagate through the air to be absorbed or dissipated, and would not disrupt electronic devices or cause physical injury like microwave or radio wave transmission might. Researchers anticipate up to 5 meters of range for the initial device, and are currently working on a functional prototype. ('Evanescent coupling' could power gadgets wirelessly)

Evanescent coupling is always associated with matter, i.e. with the induced currents and charges within a partially reflecting surface. This coupling is directly analogous to the nearfield, non-radiative coupling between the primary and secondary coils of a transformer, or between the two plates of a capacitor. Mathematically, the process is the same as that of There was an error working with the wiki: Code[42], except with electromagnetic waves instead of quantum-mechanical wavefunctions. Evanescent wave coupling is used to excite There was an error working with the wiki: Code[43] among other things. A new application could be Wireless energy transfer, useful, for instance, for charging electronic gadgets without wires. http://www.newscientisttech.com/article.ns?id=dn10575

Break down of Evanescent wave coupling

This method of resonant inductive coupling has key implications in the solution of the two main problems associated with non-resonant inductive coupling and electromagnetic radiation, one of which is caused by the other distance and efficiency. Electromagnetic induction works on the principle of a primary coil generating a predominantly magnetic field and a secondary coil being within that field so a current is induced within its coils. This causes the relatively short range due to the amount of power required to produce an electromagnetic field. Over greater distances the non-resonant induction method is inefficient and wastes much of the transmitted energy, just to increase range. This is where the resonance comes in and helps efficiency dramatically by "tunneling" the magnetic field to a receiver coil that resonates at the same frequency. Unlike the multiple-layer secondary of a non-resonant transformer, such receiving coils are single layer solonoids with closely spaced capacitor plates on each end, which, combined, allow the coil to be tuned into a certain frequency thereby eliminating the wide energy wasting wave problem and allowing the energy used to focus on a certain frequency increasing the range.

Earlier experiments were performed with the wireless transmission of energy by non-radiative electromagnetic resonant induction in the early 1890s. This work started at 35 South 5th Ave., New York City and was subsequently adopted for lighting purposes at another laboratory at 46 Houston St. (Nikola Tesla: Guided Weapons & Computer Technology, Leland Anderson, Ed., Twenty First Century Books, Breckenridge, 1998, p. 62.) The induction energy transmission method was also used at Colorado Springs, to compare its efficacy with another energy transfer method that was under development (see method #4 below). In this case the resonant induction transmitter contained three tuned circuits, and the receiver had a single tuned circuit comprised of a one-turn inductance, a capacitor and a resistive load.

Here is a tuned circuit, you see, out in the field with three incandescent lamps and a condenser. The energy is transmitted inductively, from the oscillator. In this case, I have the primary supply circuit, the energizing condenser circuit, the primary inducing circuit, and the secondary in the field as in the fourth circuit, all tuned—four circuits in resonance.(Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony, and Transmission of Power, Twenty First Century Books, 1992, pp. 93-94.)

It is found that with the above circuits and under such conditions, about 1 mile communications should be possible. With circuits 1000 meters square, about 30 miles. From this, the inferiority of the induction method would appear to be immense as compared with disturbed charge of ground and air method.(Marincic, Aleksandar, ed., Nikola Tesla—Colorado Springs Notes, 1899-1900 Nolit, 1978, p. 29.)

Electrical conduction

{|align=right

|
Image:Tesla-Magnifier-Electrostatic.png
|
Image:Magnifier-Tesla-Electrostatic.png

|}

From experiments performed between 1888 and 1907 Nikola Tesla concluded that the earth is an excellent electrical conductor, and an electric current can be made to propagate undiminished for distances of thousands of miles. It was also found that the earth’s natural electrical charge can be made to oscillate, "by impressing upon it [very low frequency] current waves of certain lengths, definitely related to its diameter."

(The Future of the Wireless Art Wireless Telegraphy & Telephony, Walter W. Massie & Charles R. Underhill, 1908, pp. 67-71)

It was also discovered that the resistance of the earth is negligible due to its immense cross sectional area and relative shortness as compared to its diameter.

A [conducting] sphere of the size of a little marble offers a greater impediment to the passage of a current than the whole earth. . . .

The resistance is only at the point where you get into the earth with your current. The rest is nothing.(Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony, and Transmission of Power, pp. 134-135)

126 x-Q. In this system, then, as you have described it, the current actually flows from the transmitter through the ground to the receiver is that so?"

"Yes, sir it does, in accordance with my understanding. In my Patent No. 649,621, “Apparatus for Transmission of Electrical Energy", [May 15, 1900] it is stated distinctly: “It is to be noted that the phenomenon here involved in the transmission of electrical energy is one of true conduction and is not to be confounded with the phenomena of electrical radiation, etc." (Nikola Tesla: Guided Weapons & Computer Technology, Leland Anderson, Twenty First Century Books, p. 82)

Tesla envisioned the development of a "world system" based upon these principles that would combine wireless telecommunications and electrical power transmission.

The currents are proportionate to the potentials which are developed under otherwise equal conditions. If you have an antenna of a certain capacity charged to 100,000 volts, you will get a certain current charged to 200,000 volts, twice the current. When I spoke of these enormous potentials [on the order of 12 million volts], I was describing an industrial plant on a large scale because that [industrial power transmission] was the most important application of these principles, but I have also pointed out in my patents that the same principles can be applied to telegraphy and other purposes. That is simply a question of how much power you want to transmit. (Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony, and Transmission of Power, p. 145)

The communications component was his initial goal. While electrical power transmission was viewed as being of greater importance, the attempt at its large-scale implementation would have taken place only after feasibility of the basic concept had been established. In 1901 work began on a prototype world wireless station known as Wardenclyffe Tower, that would have been the first in a system of interconnected towers designed for this purpose. The second facility was planned for the southern coast of England. Wardenclyffe was not completed due to financial difficulties.

Wireless energy transfer applications

The transmission of information

Several 20th century technology that use wireless power (and are in widespread use) included AM, FM, and TV broadcasting. Telecommunications and wireless internet was an application that began in the last decade of the 20th century. Wireless transmission of electricity aids navigation by the Global Positioning System.

The transmission of power

Devices using this principle to charge portable consumer electronics such as cell phones are commercially available.(SplashPower Battery powered devices can be charged by placing them on an induction mat.) The Powercast system, unveiled in 2007, is applicable for a number of devices with low power requirements. This could include LEDs, computer peripherals, wireless sensors, and medical implants. A company called eCoupled unveiled their own take on inductive coupling, which will soon be used on Herman Miller desks to recharge devices wirelesly. Example include the transcutaneous energy transfer (TET) systems in There was an error working with the wiki: Code[44]s like [[AbioCor] and induction stove tops (and microwave ovens).

A method for, "the transmission of electrical energy without wires" that depends upon electrical conduction through the earth was announced in 1904. In the distant future this system could allow for the elimination of many existing high-tension power transmission lines and facilitate the interconnection of electrical generation plants on a global scale.(The Transmission of Electrical Energy Without Wires,)

Related

Image:TeslaWirelessIllustrationCS.png

Distributed generation

There was an error working with the wiki: Code[45]

There was an error working with the wiki: Code[46]

Electric power transmission

High voltage-Alternating current, High voltage alternating current

Radiant energy

There was an error working with the wiki: Code[47]

There was an error working with the wiki: Code[48]

There was an error working with the wiki: Code[49]

There was an error working with the wiki: Code[50]

There was an error working with the wiki: Code[51]

There was an error working with the wiki: Code[52]

There was an error working with the wiki: Code[53]

There was an error working with the wiki: Code[54]

There was an error working with the wiki: Code[55]

There was an error working with the wiki: Code[56]

Wireless energy transfer

Related patents

There was an error working with the wiki: Code[2], "Apparatus for Transmission of Electrical Energy".

There was an error working with the wiki: Code[3], "Apparatus for Utilizing Effects Transmitted from a Distance to a Receiving Device through Natural Media".

There was an error working with the wiki: Code[4], "Method of Utilizing Effects Transmitted through Natural Media".

There was an error working with the wiki: Code[5], "Means for Generating Electric Currents".

There was an error working with the wiki: Code[6], "Electrical Transformer".

There was an error working with the wiki: Code[7], "Apparatus for Utilizing Effects Transmitted From A Distance To A Receiving Device Through Natural Media".

There was an error working with the wiki: Code[8], "Apparatus for Utilizing Effects Transmitted through Natural Media".

There was an error working with the wiki: Code[9], "Apparatus for the Utilization of Radiant Energy".

There was an error working with the wiki: Code[10], "Method of Utilizing of Radiant Energy".

There was an error working with the wiki: Code[11], "Art of Transmitting Electrical Energy through the Natural Mediums".

There was an error working with the wiki: Code[12], "Apparatus for Transmitting Electrical Energy".

There was an error working with the wiki: Code[13], "''Energy transmission system".

There was an error working with the wiki: Code[14], "Induction device".

There was an error working with the wiki: Code[15], "System and method for wireless electrical power transmission".

There was an error working with the wiki: Code[16], "Contact-less power transfer".

External articles, references, and further reading

Nikola Tesla

Cheney, Margaret "Tesla: Man Out of Time". Simon and Schuster, Oct 2, 2001. ISBN 0-7432-1536-2

Anderson, Leland, ed., "Nikola Tesla On His Work With Alternating Currents and Their Application to Wireless Telegraphy, Telephony, and Transmission of Power". Twenty First Century Books, 1992. ISBN 1-893817-01-6.

Tesla, Nikola, "The True Wireless". Electrical Experimenter, May 1919

Tesla, Nikola, "The Transmission of Electric Energy Without Wires". Electrical World and Engineer, March 5, 1904.

There was an error working with the wiki: Code[57], "Project Tesla: Wireless Transmission of Power Resonating Planet Earth". Theoretical Electromagnetic Studies and Learning Association, Inc.

Peterson, Gary, "The Wireless Transmission of Electrical Energy". Feed Line No. 8.

Tesla, Nikola, "The Problem of Increasing Human Energy". Century Illustrated Magazine, June 1900.

Tesla, Nikola, "World System of Wireless Transmission of Energy". Telegraph and Telegraph Age, October 16, 1927

"Tesla: Life and legacy Colorado Springs". There was an error working with the wiki: Code[58].

"1931 Electric Pierce Arrow | Tesla FAQ No. 16". Twenty First Century Books.

Books, essays, and papers

Benson, Thomas W., "Wireless Transmission of Power now Possible". Electrical experimenter, March 1920.

Aidinejad, Ahamid and James F. Corum, "The Transient Propagation of ELF Pulses in the Earth-Ionosphere Cavity".

Grotz, Toby, "Artificially Stimulated Resonance of the Earth's Schumann Cavity Waveguide". Proceedings of the Third International New Energy Technology Symposium/Exhibition, June 25th-28th, 1988.

McSpadden, James O.

"Collection of Power from Space, References".

"Wireless Power Transmission Demonstration".

"Inverse Rectennas for Two-Way Wireless Power Transmission Suitable rectennas under reverse bias can be made to act as transmitters". NASA's Jet Propulsion Laboratory, Pasadena, California.

PlanetAnalog, "Cutting the Last Wire, True wireless devices require untethered power distribution". 13 December 2005.

"Radiant Energy -- Wireless Transformer of High Power Lines?". PES Network, Inc., 2005.

Karalis, Aristeidis, J. D. Joannopoulos and Marin Solja??i?- "Wireless Non-Radiative Energy Transfer", Massachusetts Institute of Technology, November 2006.

There was an error working with the wiki: Code[1], Wikipedia: The Free Encyclopedia. Wikimedia Foundation.

Other history

Little, Frank E., James O. McSpadden, Kai Chang, and Nobuyuki Kaya, "Toward space solar power: Wireless energy transmission experiments past, present and future". AIP Conference Proceedings, January 15, 1998, Volume 420, Issue 1, pp. 1225-1233.

Coe, Lewis, "Wireless Radio: A History". McFarland & Company, Jul 1, 1996. ISBN 0-7864-0259-8

Brown, W. C.

"The history of wireless power transmission". Solar Energy, Vol. 56, No. 1, pp. 3-21, 1996.

"The History of Power Transmission by Radio Waves". IEEE Transactions on Microwave Theory and Techniques, 1984.

External sites

Project Tesla

History of Microwave Power Transmission before 1980

The SHARP's DC-to-DC power transmission system

MIT project

MIT at Wireless Power

Wireless energy could power consumer, industrial electronics

Powercast

Howstuffworks Describes wireless power transmission over short, medium, and very long distances.

'Evanescent coupling' could power gadgets wirelessly

See also

Directory:Wireless Transmission of Electricity

Directory:Microwave-Based Energy Technologies

PowerPedia:Nikola Tesla

Directory:Nikola Tesla

- PowerPedia

- Main Page

There was an error working with the wiki: Code[59]

There was an error working with the wiki: Code[60]

There was an error working with the wiki: Code[61]

There was an error working with the wiki: Code[62]

There was an error working with the wiki: Code[63]

Comments