PesWiki.com

Menu

Directory:Methane Hydrates

Lasted edited by Andrew Munsey, updated on June 14, 2016 at 9:23 pm.

  • This page has been imported from the old peswiki website. This message will be removed once updated.
Image:Methane hydrates hj85.jpg

Gas hydrates : are crystalline solids composed of gas molecules trapped inside a rigid lattice of water molecules. These compounds are stable at conditions of relatively low temperature and relatively high pressure. http://www.ruf.rice.edu/~hydrates/about.html

Where to find them : Gas hydrates that are primarily composed of methane (the main component of natural gas) and water occur naturally in Arctic permafrost at depths greater than 200 meters, and they also form in marine sediments at ocean floor depths greater than 500 meters where temperatures hover near freezing and the weight of the water produces high pressures. http://www.ruf.rice.edu/~hydrates/about.html

Vast potential as energy source : Naturally occurring gas hydrates represent a major source of untapped energy. It is estimated that more energy resides in gas hydrates than in all of the energy available in existing gas, oil and coal resources. http://www.ruf.rice.edu/~hydrates/about.html

Perspective

Congress:Member:Tai Robinson said (March 10, 2006):

Methane Hydrates will have to be mined and may be very desirable in

the future. Right now, we have enough renewable methane that is

untapped that we need to first capture the methane produced at land

fills, sewage treatment plants and feed lots before focusing any

energy on the methane hydrates at the bottom of the ocean. The

hydrates are safe, secure and stored in a good place. Methane

reproduces itself quite rapidly compared to crude oil, so we have

quite a future with our under ground methane and renewable methane

from decomposing matter. It would be wise to fully utilize these

sources before devising methods to mine the hydrates. Hopefully we

will choose to embrace all cleaner fuels and never even need a reason

to dive deep for methane hydrates. It is desirable to not burn up the

ship we are on traveling through space on when we can instead just

grab the solar energy that is always present.

Direct Methanol Fuel Cells are great, especially for the fuel storage density. My little

fuel cell demo car on the table at Extra Ordinary Conference is a DMFC

and can run for 24 hours on one little tank full of 2% solution

methanol in water! DMFC's have been approved for use on airplanes and

the replaceable canisters will extend run time considerably compared

to batteries in small electronics like cell phones, lap tops and

gameboys. DMFC's are great in portable applications.

In vehicles, we have billions of internal combustion engines that can

run on methane directly with no need to convert it into methanol and

build fuel cell vehicles. So it would be a waste of time to focus on

this route right now when we have easier solutions. We can also burn

methanol in IC engines, but again it would be simpler to just burn the

methane directly. Methanol offers a fuel density advantage over

compressed natural gas and is easier to handle than liquefied natural

gas.

Methanol is also used when processing biodiesel from veggie oil and

lye. However, when using ethanol, I understand that you can get better

cold weather performance from the biodiesel.

Natural gas, or CNG is methane, the higher the methane content the

better. When you burn it, it does not smell. Pure methane does not

smell either. That is whay the ad mercaptim as an orderant to natural

gas lines. Decomposing matter does smell, as does sewage. Adding a

small electrical voltage to wet, raw sewage skips the methane process

all together and makes hydrogen directly. Producing hydrogen directly

is great because of the many uses we have for it. The byproduct of

electrolysing liquid waste and sewage is a black, carbon rich sludge,

that is a perfect fertilizer.

Jonathan Bonanno wrote (March 10, 2006):

You are 100% correct that harvesting the methane from decomposing matter is

an exceptional manner to gather the resource, problem is people. Waste

Management from Texas struggled with their business for a long time, until

they broke the critical mass barrier in trash collection and processing.

Their primary hurtle was the "local" factions of trash removal that were

entrenched. The same, if not worse, can be said about oil and NG production

and drilling.

Now that Waste Management has and is succeeding more and more everyday,

wouldn't they be a perfect partner to demonstrate the strengths and

potential profits of DMFC? WM is already in this space and growing.

In the News

Image:Methane hydrate burning 95x95.jpg
Directory:Methane > Directory:Methane Hydrates > China Developing “Combustible Ice” as New Energy Source - Combustible ice has been found in high altitude frozen plateaus as well as underwater in marine sediments. Natural gas hydrates are essentially just frozen methane and water and can literally be lit on fire bringing a whole new meaning to fire and ice. (Inhabitat March 11, 2010)
Image:Methane hydrate mound sea floor BC 95x95.jpg

Scientists unlock frozen natural gas - For the first time, Canadian and Japanese researchers have managed to efficiently produce a constant stream of natural gas from ice-like gas hydrates that, worldwide, dwarf all known fossil fuel deposits combined. (The Star Toronto April 16, 2008)

Image:Methane hydrates hj85.jpg

NETL Researchers Pursue Gas Hydrates Across the Globe - Over the past 18 months, NETL researchers have pursued natural gas hydrates from the Equator to the Arctic Circle. Gas hydrates are solid combinations of natural gas and water that are found in environments of high pressure and/or extremely low temperatures such as the Arctic regions and within shallow sediments of deep-water continental shelves across the globe. They have immense potential as a future energy resource and are also an important, yet poorly understood, component of the global carbon cycle and global climate change. (Netlog Jan. 2008)

China and India Exploit Icy Energy Reserves - China and India have reported massive finds of frozen methane gas off their coasts, which they hope will satisfy their energy needs. But environmentalists fear that tapping these resources could have adverse effects on the world climate. (Speigel Dec. 13, 2007) (Thanks Directory:James Dunn)

BP Drills Alaska North Slope Gas Hydrate Test Well - BP Exploration successfully drilled a research well to collect samples and gather knowledge about gas hydrate, a potential long-term unconventional gas energy resource. Known deposits of methane hydrate are enormous. However, the challenge is finding the technology to unlock the energy, to separate the natural gas from the solid gas-water-ice "clathrate" in which it occurs. (BP Feb. 20, 2007)

Combustible Ice - Over the next decade, China plans to invest 800 million RMB (US $100 million) in the development of methane gas hydrate—so-called “combustible ice?—to meet its rising energy demand and alleviate heavy dependence on fossil fuels. Scientists, however, worry that the move may cause environmental damage due to the unstable nature and high methane content of the energy source. (WorldWatch Sept. 7, 2006) (Thanks ZPEnergy)

Methane Hydrates -- Energy Source of the Future? - Natural gas locked up in methane hydrates could be the world's next great energy source--if engineers can figure out how to extract it safely. (Popular Mechanics Apr. 2006)

Research and Development

Image:Methfuelcell 945x95.jpg

More-Powerful Fuel Cells - A cheap polymer material increases the power output of methanol fuel cells by 50 percent. Paula Hammond, a chemical engineer at MIT, has made a fuel-cell membrane out of layers of polymers whose electrochemical properties can be precisely tuned to prevent fuel waste. (MIT Technology Review'' May 22, 2008)

Resources

Methane Hydrates (clathrate)

Gas Hydrates on the ocean floors - On June 15, 2007 the Science channel noted that there is enough energy in gas hydrates in the Gulf of Mexico to power all USA energy needs for 3,000 years. These deposits are found worldwide in the oceans and represent a cleaner and far more abundant source of energy than oil. Methane hydrate is the most common form.

Gas Hydrates - an overview (Rice University)

http://www.netl.doe.gov/scngo/NaturalGas/hydrates/index.html

http://www.fossil.energy.gov/programs/oilgas/hydrates/index.html

http://www.Yamaha-motor.co.jp/global/news/2004/09/22/dmfc.html

Direct Methanol Fuel Cells

http://www.atomki.hu/ar99/b/b02/b02.html

http://www.fctec.com/fctec_types_dmfc.asp

http://www.dmfcc.com/

Comments